×
Home Current Archive Editorial board
News Contact
Original scientific paper

CALCULATION OF THERMAL CONDUCTIVITY FOR CRYSTALLINE NANOSTRUCTURES

By
Siniša Vučenović ,
Siniša Vučenović
Contact Siniša Vučenović

Faculty of Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina

Jovan Šetrajčić
Jovan Šetrajčić
Contact Jovan Šetrajčić

University of Novi Sad, Novi Sad, Serbia

Abstract

We have introduced a theory for the calculation of thermodynamic characteristics for some characteristic nanostructures (ultrathin films and superlattices), using the adapted method of two-time temperature Green's functions. In this paper, he has determined the coefficient of thermal conductivity using the definition of free energy and then compared their temperature dependence to the thermal conductivity behavior of the bulk structures. For the observed nanostructures, the thermal conductivity coefficient values are almost equal at low temperatures, but at the same time, significantly lower than the bulk sample values. That result could be useful for the possible achievement of better superconducting conditions in the observed compound nanostructures.

References

Agranovich, V. M., & Galanin, M. D. (1978). Migration of Electron Energy Excitations in Condensed Matter, Nauka.
Alofi, A., & Srivastava, G. P. (2012). Phonon Conductivity in Graphene. J.Appl.Phys, 112, 013517. https://doi.org/10.1063/1.4733690.
Cocemasov, A. I., Nika, D. L., & Balandin, A. A. (2015). Engineering of Thermodynamic Properties of Bilayer Graphene by Atomic Plane Rotations: the Role of out-of-plane Phonons. Nanoscale, 7, 12851. https://doi.org/10.1039/C5NR03579A.
Isihara, A. (n.d.). Statistical Physics. ISBN, 9781483274102.
Jain, A., & Goodson, K. E. (n.d.). Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method, J.Heat Transfer.
Kittel, C. (1986). Introduction to Solid State Physics.
Kubo, R. J. (n.d.). Statistical-Mechanical Theory of Irreversible Processes. In II. Response to Thermal Disturbance.
Nika, D. L., & Balandin, A. A. (n.d.). Phonons and Thermal Transport in Graphene and Graphene-Based Materials. https://doi.org/10.48550/arXiv.1606.00488;
Nika, D. L., Cocemasov, A. I., & Balandin, A. A. (2014). Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations. Appl. Phys. Lett, 105, 031904.
Popov, V. N. (n.d.). Low-temperature specific heat of nanotube systems. In Physical Review B (Vol. 66, Issue 15). https://doi.org/10.1103/physrevb.66.153408
Santamore, D. H., & Cross, M. C. (2001). The Effect of Surface Roughness on Universal Thermal Conductance, 1. Phys.Rev.B, 63. https://doi.org/10.1103/PhysRevB.63.184306.
Schwab. (2000). Measurement of the Quantum of Thermal Conductance. Nature, 404, 974.
Šetrajčcií, J. P., Sajfert, V. D., & Jaćcimovski, S. K. (2016). Fundamental Preferences of the Phonon Engineering for Nanostructural Samples. In Reviews in Theoretical Science (Vol. 4, Issue 4, pp. 353–401). https://doi.org/10.1166/rits.2016.1067
Šetrajčić, J. P., Ilić, D. I., & Jaćimovski, S. K. (2018). The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films. In Physica A: Statistical Mechanics and its Applications (Vol. 496, pp. 434–445). https://doi.org/10.1016/j.physa.2017.12.138
Šetrajčić, J. P., Jaćimovski, S. K., & Sajfert, V. D. (n.d.). Phonon Contribution to Heat Capacitance of Nanolayered Crystalline Structures. Mod.Phys.Lett.B, 29(4), 1550008.
Šetrajčić, J. P., Jaćimovski, S. K., & Sajfert, V. D. (2015). Phonon Engineering Theory of Crystalline Layered Nanostructures. In 57, ISBN (pp. 978-3659-80775-6,).
Šetrajčić, J. P., Jaćimovski, S. K., & Vučenović, S. M. (2017). Diffusion of phonons through (along and across) the ultrathin crystalline films. In Physica A: Statistical Mechanics and its Applications (Vol. 486, pp. 839–848). https://doi.org/10.1016/j.physa.2017.06.003
Šetrajčić, J. P., Jaćimovski, S. K., & Vučenović, S. M. (2022). Green’s Functions in Quantum Statistical Physics. Condensed Matter Physics, International Conference on Applied Sciences, Banja Luka.
Šetrajčić, J. P., Mirjanić, D. L., Vučenović, S. M., Ilić, D. I., Markoski, B., Jaćimovski, S. K., Sajfert, V. D., & Zorić, V. M. (2009). Phonon Contribution in Thermodynamics of Nano-Crystalline Films and Wires. Acta Phys.Pol. A, 115, 778–782.
Šetrajčić, J. P., Zorić, V. M., Delić, N. V., Mirjanić, D. L., & Jaćimovski, S. K. (2011). Phonon Participation in Thermodynamics and Superconductive Properties of Thin Ceramic Films. „Thermodynamics”, 15, 317-348,.
Tyablikov, S. V. (1975). Methods of Quantum Theory in Magnetism.
(Vol. 316, Issue 1, pp. 389–392). (2002). https://doi.org/10.1016/S0921-
(N.d.). https://doi.org/10.1038/35010065.
(1971).
(2017). Prog.Phys, 80, 036502,.

Citation

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.