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ABSTRACT  
We have introduced a theory for the calculation of thermodynamic characteristics for some 
characteristic nanostructures (ultrathin films and superlattices), using the adapted method of two-time 
temperature Green's functions. In this paper, he has determined the coefficient of thermal conductivity 
using the definition of free energy and then compared their temperature dependence to the thermal 
conductivity behavior of the bulk structures. For the observed nanostructures, the thermal conductivity 
coefficient values are almost equal at low temperatures, but at the same time, significantly lower than 
the bulk sample values. That result could be useful for the possible achievement of better 
superconducting conditions in the observed compound nanostructures. 
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1. INTRODUCTION 
Elementary particles – mechanical 
oscillations – phonons are a subsystem that 
is always present when analyzing the 
conducting, semiconducting, or dielectric 
properties of the system. Accordingly, we 
will first analyze the kinetics of mechanical 
oscillations in nanoscopic–ultrathin films, 
which can be considered as a basis for 
investigating other properties of more 
complex nanostructures. In a way, this work 
represents a generalization of the previous 
research [1–6]. 
We will start with the definition expression 
for the coefficient of thermal conductivity 
[7,8]: 

MCD       (1.1) 
where D  is the diffusion coefficient, C  – 
specific heat, and M is the mechanical 
density of the observed structure. The 

diffusion coefficient D (strictly, it is the 
diagonal matrix element of diffusion tensor 
Dij) will be found by the Kubo formula [7]. The 
temperature dependence of nanostructure 
density will be determined by the two-time, 
temperature-dependent Green's function 
method [9]. Using this method one can find 
the internal energy and the average value of 
the square of molecular displacements. 
All analyzes will be calculated regarding the 
presence of specific boundary conditions on 
its surfaces, which are responsible for the 
appearance of unusual effects and changes 
in the basic properties of these structures [6]. 
 
2. CALCULATION OF THE DIFFUSION 

COEFFICIENT 
To determine the diffusion coefficient, we 
will start with the Kubo formula [7,8]: 
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where iv̂  and jv̂  (i,j = x,y,z) are the velocity 

operators in Heisenberg representation,   is 
the perturbation parameter and the averages 
will be taken over the great canonical 
ensemble. We will find the correlation 
function  )(ˆ)0(ˆ tvv ji  through Green's 

function  )0()( ji ptp , which represents 

the components of the molecular 
momentum. 
The Hamiltonian of the phonon subsystem of 
a superlattice with two motifs a and b (two 
ultrathin films) taken in harmonic and 
nearest neighbor’s approximation [9], can be 
written as follows: 
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where Ma/b are the masses of molecules in first/second ultrathin films, VP/B are the potential 
energies of surface and bulk terms, uMp   (u  are molecular displacements), and ban /  are 

numbers of molecules in corresponding motive. Boundary conditions will be taken into 
account during the formation of a system of equations defining Green's function of the system.  
We have determined the following Green's function, which will be written in the next form: 
Because of valid relation: pi = M vi ; vi = dui / dt, in the expression determining this function, 
appears the second Green's function of a type  )0()( fnnfnn yxyx

utu  [10]. In this way, the 

correlation function of the Green's function is given by a general formula [11,12]: 
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Green's function can be expressed as a sum of elementary fractions [10]. In this way, we obtain 
the correlation function (2.3), i.e. corresponding velocity correlation function: 
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By the general formula (2.2) the diffusion coefficient is given by: 
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It is seen that the phonon diffusion coefficient of the superlattice, as well as that of the bulk, 
does not depend on temperature [13]. 
 
3. THERMODYNAMIC BEHAVIOUR OF SUPERLATTICE 
The internal energy of the system is given by the standard formula [11-13]: 
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where the phonon dispersion law is given by the basic formula: Phonon-reduced frequencies 
and intermolecular distance are expressed through the geometric mean of phonon frequencies, 
i.e. of intermolecular distances in separate motifs:  Quantity θ is thermodynamic temperature 
θ= kB T. 
After partial integration in (3.1) and introducing notations: we obtain the following expression: 
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Since the specific heat is given by 
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Temperature dependence of the thermal 
capacity is determined by two specific terms. 

The first term is  /)e1( 1



m

 which is 
“responsible” for the behavior of the system 
at low and high temperatures. The second 
term containing Z-functions characterizes 
temperature behavior in the middle-
temperature range. 
Based on the results of the previous research 
on the phonon contribution to the 
thermodynamic behavior of the ultra-thin 
film structures [1–3], and the well-known 
behavior of the bulk [7,11–13], Fig. 1 shows the 
comparative display of the specific heat for 
the superlattice, ultra-thin film and the bulk 
structures in dependence of the reduced 
temperature:  x=/m 

From Fig. 1, one can conclude that the 
behavior of the thermal capacity of a 
superlattice in a low-temperature range is 
similar to bulk ones. The temperature 
behavior of the thermal capacity of a 
superlattice in a middle-temperature region 
is similar to film ones. The difference in 
these capacities is most pronounced in the 
high-temperature area.  
Now we will approach the determination of 
the temperature behavior of the superlattice 
thermal conductivity. The expression for the 
dynamical density of superlattice: 
The primary text heading should be 
numbered by 1., 2., ... and should be in 12-pt., 
bold, capital letters, flush left with margin. 
The spacing from the text to the next 
heading is one line. 
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The averages of squares of displacements for molecular superlattices we can find as in Debye’s 
representation. After integration, the expression for the density becomes: 
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The diffusion coefficient is given by the relation (2.5), where: 
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are the average value phonon frequencies. After elementary calculations, we obtain the 
diffusion coefficient: 
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Introducing notations /m = x we reduce the expression (1.1) for thermal conductivity 
coefficient to the form: 
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Temperature dependence of the thermal 
conductivity coefficient is determined by two 
specific terms. Similar to the expression for 
thermal capacity, here is the first term which 
is “responsible” for the behavior of the 
system at low and high temperatures. Also, 
the second term containing Z-functions, 

characterizes temperature behavior in the 
middle-temperature range. A graphical 
presentation of the dependence of the 
relative thermal conductivity coefficient 

)()(13.2/ 210 xJxJ   on scaled 

temperature x=/ D  is given the Fig. 2. 

  

Figure 1. Specific heats of bulk (b), films (f), 
and superlattice (s) structures 

Figure 2. Conductivity coefficient of bulk (b), 
films (f), and superlattice (s) structures 

From Fig. 2 it can be concluded that the 
behavior of the thermal conductivity 
coefficient of superlattice is similar to the 
ultrathin film one (it is higher than in bulk 
structure). The Difference is more expressive 
in the middle and high-temperature range. 
So, it can be concluded that the superlattices 
in the low-temperature range are somewhat 
better heat conductors than the bulk 
structures. At the same time, the heat 
conduction of the film is higher than in 
superlattices. On the other hand, in the high-
temperature range superlattices are much 
better heat isolators than film structures and 
the corresponding infinite crystal structures. 

As our results were obtained theoretically, 
we looked for experimental confirmation in 
the scientifically available literature. An 
extensive analysis of the available 
experimental results was carried out [14–21], 
of which we will in this paper present, for 
the sake of brevity, only a few of them. In the 
paper [14], the thermodynamic characteristics 
of micrometer SiN film structures were 
measured. Although these are not real 
nanostructures (because the thickness of 
these films is about 1.5 µm), film 
microstructures still show a similar behavior 
of specific heat and thermal conductivity as 
our theoretically obtained and predicted 
dependences for film structures, Fig. 3. 
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Figure 3. Thermal conductivity and heat capacity for 1.5 µm silicon nitride films [14] 

  
Since graphene is one of the most studied 
materials today, and it is a true member of 
nano-thin (film) structures, it was justified to 
compare our results with the 
thermodynamic behavior of graphene. In the 
paper [15], the specific heat was measured for 
graphene (nano-film structure of carbon 
atoms), AB-stacked bilayer graphene (AB-
BLG), and graphite (which represents an 
essential bulk structure). 

 
Figure 4. Phonon-specific heat capacity in 

graphene, AB-BLG, and graphite [15,16] 
It is visible that our calculations show a 
similar behavior of the dependence of the 
specific heat on the temperature for the film 
structure, compared to the bulk structures, in 
the domain of low temperatures (i.e. on the 
temperatures interesting for many 
phenomena - such as superconductivity). 
Figure 4, in the frame, shows the dependence 
of specific heat at high temperatures, which 
obeys the Dulong-Petit law.   
 
 

4. CONCLUSION 
The results obtained here show that the 
thermal conductivity coefficients of the film 
and the superlattice at low and high 
temperatures are significantly lower than 
the thermal conductivity coefficient of the 
corresponding bulk structures, where the 
thermal coefficient dependence from 
temperature is T3. This result is also 
practically applicable: a sandwich of several 
films would be a better thermal insulator 
than a bulk structure of the same thickness.  
Here presented theoretical results are 
compared with experimental data [14–21]. 
Our theoretically predicted results are in 
satisfactory agreement with experimental 
data. 
According to the Viedeman-Frantz rule, 
electrical conductivity is proportional to 
thermal conductivity. This leads to the 
conclusion that films and superlattices are 
weaker electrical conductors than bulk 
structures of the same material at low and 
high temperatures. 
For future research would be interesting to 
evaluate the superconducting properties of 
observed structures. The general behavior for 
today's materials is that the worse 
conductors at the room temperature region, 
become the better superconductors at the 
low (cryogenic) temperatures region. In such 
a way, the ultrathin films and superlattices 
could be structures with high 
superconductivity potential, not only for the 
low-temperature but also for the high-
temperature region. 
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