×
Home Current Archive Editorial board
News Contact
Review paper

Georgi-Glashow SU(5) - basis for proton decay and neutrino mass problem from SM to GUT

By
Emina Džaferović-Mašić
Emina Džaferović-Mašić
Contact Emina Džaferović-Mašić

Faculty of Mechanical Engineering, University of Sarajevo , Sarajevo , Bosnia and Herzegovina

Abstract

In this article we present the original Georgi-Glashow  model with gauge and fermion sector derivation in order to show grand unified theory (GUT) through this model, but also to correlate  and Standard Model (SM). One of the correlations reside in neutrino mass sector where both and Standard Model (SM) see neutrinos as massless particles. We will show that gauge sector yields twelve gauge bosons that will mediate proton decay within . Beside this, Georgi-Glashow model provides a basis for development and extrapolation in terms of reconstructing it to find viable neutrino mass mechanism that we present in our conclusion.

References

Antusch, S., & Hinze, K. (n.d.). Nucleon decay in a minimal non-SUSY GUT with predicted quark-lepton Yukawa ratios.
Beneš, P., & Blaschke, F. (2023). Magnetic monopoles in extensions of Georgi–Glashow model. Journal of Physics: Conference Series, 2667, 012047.
Doršner, I., Džaferovic-Mašić, E., Fajfer, S., & Saad, S. (2024). Gauge and Scalar Boson Mediated Proton Decay in a Predictive SU(5. GUT Model, Phys. Rev. D, 109.
Doršner, I., Džaferovic-Mašić, E., & Saad, S. (2021). Parameter space exploration of the minimal SU(5) unification. Phys. Rev. D, 104.
Doršner, I., & Saad, S. (2020). Towards Minimal SU(5. Phys. Rev, D, 101.
Džaferovic-Mašić, E. (2024). A correlation study of proton decay signatures induced through the gauge boson and scalar leptoquark mediations.
Fornal, B. (2014). Baryon Number Violation beyond the Standard Model.
Georgi, H., & Glashow, S. L. (n.d.). Unity of All Elementary-Particle Forces. Physical Review Letters, 32(8), 438–441. https://doi.org/10.1103/physrevlett.32.438
Glashow, S. L. (1961). Partial-symmetries of weak interactions. Nuclear Physics, 22(4), 579–588. https://doi.org/10.1016/0029-5582(61)90469-2
Gonzalez-Garcia, M., Maltoni, M., & Schwetz, T. (2016). Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908, 199–217.
Kang, K. (1980). Introduction to grand unification theories. In 15th Rencontres de Moriond: II: Electroweak and Unified Theory Predictions (pp. 413–426).
Salam, A. (1994). Weak and electromagnetic interactions. In World Scientific Series in 20th Century Physics (pp. 244–254). https://doi.org/10.1142/9789812795915_0034
Salas, P. F., Gariazzo, S., Mena, O., Ternes, C. A., & Tórtola, M. (2018). Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects. Frontiers in Astronomy and Space Sciences, 5.
Weinberg, S. (n.d.). A Model of Leptons. Physical Review Letters, 19(21), 1264–1266. https://doi.org/10.1103/physrevlett.19.1264
Zhang, W., Li, E.-K., Du, M., Mu, Y., Ning, S., Chang, B., & Xu, L. (2019). Detecting the neutrino mass and mass hierarchy from global data. https://doi.org/10.48550/arXiv.1904.09698
(1961). The symmetry breaking pattern SU(5)->SU(3)xU(1) including one loop radiative corrections. Zeitschrift Fuer Physik C, Particles and Fields, 19, 101–105.

Citation

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.