The demand for stainless steels has been steadily increasing across industries such as automotive, aerospace, aviation, medical technology, and household appliances, primarily due to their excellent corrosion resistance, low thermal conductivity, and favorable strength-to-weight ratio. Many of these applications involve components with complex geometries and strict dimensional tolerances, making machinability a crucial factor. Technical surfaces are not ideally smooth geometric surfaces separating two media, but are, from a microscopic point of view, rough surfaces characterized by a series of irregularities of different sizes, shapes, and arrangements. The roughness represents the microgeometric irregularities of the surface, i.e., unevenness at the small reference length (l) of a given direction of the surface. According to the available literature, the effect of alloying elements on roughness during conventional turning has not been sufficiently investigated. Therefore, the objective of this study is to investigate and quantify the effect of alloying elements and nonmetallic inclusions on roughness magnitudes in the longitudinal turning process of X8CrNiS18-9 stainless steel.
Pereira, O., Rodríguez, A., Fernández-Abia, A. I., Barreiro, J., & López de Lacalle, L. N. (2016). Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. Journal of Cleaner Production, 139, 440–449. https://doi.org/10.1016/j.jclepro.2016.08.030
Xia, T., Kaynak, Y., Arvin, C., & Jawahir, I. S. (2015). Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material. The International Journal of Advanced Manufacturing Technology, 82(1–4), 605–616. https://doi.org/10.1007/s00170-015-7284-y
Perçin, M., Aslantas, K., Ucun, İ., Kaynak, Y., & Çicek, A. (2016). Micro-drilling of Ti–6Al–4V alloy: The effects of cooling/lubricating. Precision Engineering, 45, 450–462. https://doi.org/10.1016/j.precisioneng.2016.02.015
Mahmutović, A., & Rimac, M. (2015). Modification of non-metallic inclusions by tellurium in austenitic stainless steel. 81–84.
Kaladhar, M., Subbaiah, K. V., & Rao, C. H. S. (2012). Machining of austenitic stainless steels - a review. International Journal of Machining and Machinability of Materials, 12(1/2), 178. https://doi.org/10.1504/ijmmm.2012.048564
Abbas, A. T., Alata, M., Ragab, A. E., El Rayes, M. M., & El Danaf, E. A. (2017). Prediction Model of Cutting Parameters for Turning High Strength Steel Grade-H: Comparative Study of Regression Model versus ANFIS. Advances in Materials Science and Engineering, 2017, 1–12. https://doi.org/10.1155/2017/2759020
Hillert, M. (1998). Phase equilibria, phase diagrams and phase transformations -The thermodynamic basis. Cambridge University Press, 1998.
Vinograd, M., & Gromora, G. (1972). Inclusions in steels and alloys. “Metallurgy”, Moscow, 1972.
Ekinović, S., Plančić, I., Begović, E., Ključanin, D., & Beganović, O. (n.d.). Analysis of the common influence of free forging and machining parameters on steel products quality. 12th Research/Expert Conference with International Participation ”QUALITY 2021“, Neum, B&H, June 17-19, 2021., 12.
Babahmetović, H., & Dr. (1990). Razvoj i razrada savremenih metalografskih metoda identifikacije sadržaja i vrste nemetalnih uključaka kod kvalitetnih čelika, Metalurški institut "Hasan Brkić.
Mujagić, D. (2017). Doprinos istraživanju uticaja mikrolegiranja sa borom, cirkonijem i telurom na osobine austeninog nehrđajućeg čelika sa dodatkom sumpora X8CrNiS18-9. [Doktorska Disertacija], Univerzitet u Zenici, Metalurško – Tehnološki Fakultet, Zenica, 2017.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.