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ABSTRACT  
The translational symmetry of the distribution of atoms (ions) of the charge carriers (electrons or holes) 
system is broken by sputtering (doping) due to the existence of two boundary surfaces. This is a model 
of high-temperature superconductors in which the observed symmetry breaking orthogonal to the CuO 
plane is treated as a perturbation. Single-particle fermion wave functions and possible charge carrier 
energies were determined. The competing existence of superconducting and normal regions in such a 
sample is shown in agreement with experimental data. The conditions for the formation of 
superconducting states and the limits of the current density values in the planes parallel to the 
boundary surfaces (in the CuO planes) were obtained and discussed. 
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1. INTRODUCTION 
High-temperature superconducting ceramics 
have "broken" the myth of an exclusively 
low-temperature effect of superconductivity 
[1–4]. Although they were discovered and 
improved at the end of the last century, the 
mechanism of superconductivity has not 
been figured out to date. The biggest 
difficulty is their highly anisotropic structure 
(Figure 1). 
The answer to the question of the oxide 
ceramics superconductivity mechanism 
must be undoubtedly sought in the phonon 
subsystem, in the elementary charges 
subsystem as well as in the interaction of 
these subsystems. Concerning the very 
anisotropic structure of the superconductive 
ceramics [1,2], we have attempted to 
construct a theoretical model conveying the 
broken translational symmetry of atoms 
(molecules) arrangement along one direction 
in the crystal lattice, the difference in masses 

of these molecules, and the presence of two 
boundary planes along this direction [5,6]. 

 

Figure 1. Model of high-temperature 
superconductors – CuO ceramics 
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The phonon system is drawn out in this 
model [6]. We have determined the phonon 
states and their energy spectra and have 
shown that, due to the broken crystal 
symmetry (actually because of deformed and 
tiny granular structure), the phonons of 
optical type owning the energy gap are 
present here [7]. The next task we have 
attempted to solve is to determine and 
analyse the spectra of free charge carriers 
(electrons or holes), the Landau criterion, and 
the probabilities of states and entropy within 
the same model. The preliminary results are 
already presented [8,9].  
 
2. MODEL HAMILTONIAN 
To obtain the Hamiltonian of the charge 
carriers in the structure with broken 
translational symmetry, it is most suitable to 
start with the standard Hamiltonian of the 
electron system in an ideal infinite structure 
[10–12]:   

𝐻 = ∑ ⃗
ℏ ⃗

∗  𝐶 ⃗ 𝐶 ⃗ ,                                                    (1) 
 where 𝑚∗ is electron effective mass, while 𝐶 ⃗  
and 𝐶 ⃗  are Fermi creation and annihilation 
operators of electrons with momentum ℏ�⃗� 
and energy ℏ �⃗� (2𝑚∗) . If we go over to the 
configuration space using the 
transformations:   
𝐶 ⃗ =

√
∑ ⃗ 𝐶 ⃗e

⃗ ⃗;         𝐶 ⃗ =
√

∑ ⃗ 𝐶 ⃗ e
⃗ ⃗,    (2) 

 where 𝑁 is the number of molecules in the 
considered structure, we get:   
𝐻 = ∑ ⃗ Λ𝐶 ⃗ 𝐶 ⃗ − ∑ ⃗, ⃗ 𝑊 ⃗ ⃗𝐶 ⃗ 𝐶 ⃗.                   (3) 

Here Λ = 𝑁 ∑ ⃗
ℏ ⃗

∗  and 𝑊 ⃗ ⃗ =

−𝑁 ∑ ⃗
ℏ ⃗

∗   e
⃗( ⃗ ⃗). Due to the canonicity of 

the transformation (2), the operators 𝐶 ⃗  and 
𝐶 ⃗ are also Fermi operators.  
Let us recall the most important assumptions 
of our model: we consider the tetragonal i.e. 
generalized cubic structure with very high 
anisotropy along the 𝑧-axis. It means that the 
lattice constant in this direction (𝑎 ) is a few 
times larger than the lattice constant 𝑎 , 𝑎  in 
the directions 𝑥 and 𝑦. The translational 
symmetry is fully conserved in the 𝑋𝑌 
planes, while the symmetry of the masses 
arrangement along the 𝑧 direction is broken 
(during the doping of the ceramic structure 
by the introduction of foreign atoms, the 
sputtered atoms located along this direction 

because it is energetically most convenient). 
We also assume here that the structure under 
consideration is a film (not necessarily thin!). 
It means that the components of lattice 
vector 𝑛 ≡ (𝑛 , 𝑛 , 𝑛 ) vary in the following 
way:   
𝑛 ∈ − , + ,   𝑟 = (𝑥, 𝑦);    𝑛 ∈ [0, 𝑁 ]      (4) 
The numbers of atoms 𝑁  and 𝑁  along the 
directions 𝑥 and 𝑦, respectively, may be 
indefinitely high since we have the 
translational symmetry along these 
directions. The number of atoms along 𝑧 
direction (𝑁 ) is limited.  The above-described 
model, i.e. the highly anisotropic matrix 
along the 𝑧 direction, necessarily doped with 
foreign atoms, can be used for getting some 
qualitative conclusions about the 
superconductive ceramics behaviour. It is 
known [1–3] that the ceramic oxides are 
anisotropic along one privileged direction 
and that the superconductive state is realised 
by doping. But the real structure of the 
ceramic oxides–perovskites is approximated 
by the tetragonal structure. It is also assumed 
in the model that the sputtering is symmetric 
on both boundary planes: 𝑛 = 0 and 𝑛 = 𝑁  
and between the layers 𝑛 = 0 and 𝑛 = 1 (as 
well as between the layers 𝑛 = 𝑁 − 1 and 
𝑛 = 𝑁 ) 𝑛  foreign particles are placed, in 
such a way that the structure of the doped 
matrix is unchanged near the middle of the 
film.  
If the behaviour of the quantities from (3) 
may be expressed by the law:   
𝑊 ⃗ ⃗ =

| ⃗ ⃗|
;         𝑊 > 0;         ℎ > 0,                 (5) 

 in the nearest neighbors approximation, we 
get:   
𝑊 ; ± ≡ 𝑊 = 𝑊  𝑎 ;         𝑠 = (𝑥, 𝑦, 𝑧).           (6) 
According to the described view of the 
doping, it is obvious that lattice constant 𝑎  
in the doped structure becomes dependent on 
the position 𝑛 , i.e. 𝑎 ⟶ 𝑎 (𝑛 ). Because of 
the symmetry on the boundaries: 𝑎 (0) =

𝑎 (𝑁 ) = 𝑎 (𝑛 + 1) ;  𝑎 (𝑁 /2) = 𝑎 , we may 
take:   
𝑎 (𝑛 ) = 𝑎 1 −  𝑁 ; 𝑁 = 2𝑛 𝑁 − 1. (7) 

The dependence of the lattice constant on the 
index 𝑛  causes the dependence of the 
interaction along 𝑧 direction on the index 𝑛 , 
i.e.: 
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𝑊 ⟶ 𝑊 (𝑛 ) = 𝑊 𝑎 (𝑛 ) = 𝑊 𝑎 1 − 𝑁 ≈ 𝑊 (1 + Φ𝑁 ),                                                       (8) 

where Φ = ℎ𝑛 (𝑛 + 1) . The interactions 𝑊  
and 𝑊 , according to the described picture, 
are unchanged. We must notice that the last 
two expressions are valid for even 𝑁 . But, for 
large enough 𝑁  (𝑁 ≈ 𝑁 + 1), or during the 
transition from 𝑛  to continual variable 𝑧, the 
deviations from the formulas (7) and (8) for 

odd 𝑁  are not essential. The values of Λ are 
not dependent on the index of the site, 
because of they are unchanged during the 
doping. Hence we can write the Hamiltonian 
of the doped structure in the form:   
𝐻 = 𝐻 + 𝐻 ,                                                                 (9) 
where:   

 𝐻 = ∑ , 𝐶 Λ𝐶 − 𝑊 𝐶 , + 𝐶 , − 

 − 𝑊 𝐶 , + 𝐶 , − 𝑊 (1 − Φ)𝐶 + (10) 

 +𝐶 Λ𝐶 − 𝑊 𝐶 , + 𝐶 , − 

 − 𝑊 𝐶 , + 𝐶 , − 𝑊 (1 − Φ)𝐶 , 
and, as we can see, it is related to the boundary layers (𝑛 = 0 and 𝑛 = 𝑁 ), where 
𝑊 , , ; , , = 𝑊 , , ; , , = 0, and for 𝐻  we find:   

 𝐻 = ∑ , ∑ 𝐶 Λ𝐶 − 𝑊 𝐶 , + 𝐶 , − 

 − 𝑊 𝐶 , + 𝐶 , − 𝑊 (1 − Φ)𝐶 + (11) 

 +𝐶 Λ𝐶 − 𝑊 𝐶 , + 𝐶 , − 

 − 𝑊 𝐶 , + 𝐶 , − 𝑊 (1 − Φ)𝐶 . 
 

3. SINGLE-PARTICLE STATES OF THE SYSTEM 
We shall analyse the system described by Hamiltonian (9) using the orthonormalized single-
electron state functions [12]:   
 |Ψ〉 = ∑ , , 𝐴 , , 𝐶 , , |0〉;         ∑ , , |𝐴 , , | = 1. (12) 
We obtain the equations for finding the coefficient 𝐴 , ,  using the equations of motion for 
operators 𝐶 , , . From 𝐶 , , (𝑡) = 𝐶 , , (0)𝑒 ,  𝜔 = 𝐸/ℏ, it follows:   

 𝐸 𝐶 , , − 𝐶 , , , 𝐻 ≡ 𝑂 , , ;         𝑂 , , = 𝑂. (13) 
Based on equations (9 –11) and (13), we form operators 𝑂 , , , 𝑂 , , ,

 and 𝑂 , , . After 
applying them to the functions (12) and using the substitution:   
 𝐴 , , = 𝐴 𝑒 ( ), (14) 

where 𝑘 = 𝜈 ; 𝑗 = (𝑥, 𝑦); 𝜈 ∈ − , +  and based on the fact that Λ = 2 ∑ 𝑊 , we find the 

following system of difference equations:   
(𝐸 − 4𝑄 − 2𝑊 )𝐴 + 𝑊 (1 − Φ)𝐴 = 0,           𝑛 = 0; 

(𝐸 − 4𝑄 − 2𝑊 )𝐴 + 𝑊 (1 − Φ)𝐴 = 0,          𝑛 = 𝑁 ;                      (15) 
(𝐸 − 4𝑄 − 2𝑊 )𝐴 + 𝑊 (1 + Φ𝑁 ) 𝐴 + 𝐴 = 0,    1 ≤ 𝑛 ≤ 𝑁 − 1,               (16) 

 
where 𝑄 ≡ 𝑄 = 𝑊 sin +

𝑊 sin . We shall perform further 
analysis in the continual approximation to 
avoid the complications arising during the 
determination of the coefficient 𝐴  from the 

system of difference equations (15). 
Introduction of the continual variable 𝑧 
through 𝑛 → 𝑧/𝑎     (𝑁 → 𝐿/𝑎 ) causes the 
following transformations of the expressions 
(7) and (8):   

𝑎 ; → 𝑎 (𝑧) = 𝑎 1 − 2 − 1 ,    𝑊 ; → 𝑊 (𝑧) = 𝑊 1 + Φ 2 − 1 .  (17) 

The coefficients 𝐴  will be transformed in the following way:  

 
𝐴 → 𝐴(𝑧)  ;         𝐴 + 𝐴 → 𝐴(𝑧 + 𝑎 ) + 𝐴(𝑧 − 𝑎 ),∗ 1.0𝑚𝑚

𝐴(𝑧 ± 𝑎 ) ≈ 𝐴(𝑧) ± 𝑎 + ;        𝑎 ≡ 𝑎 (𝑧) = ∫ 𝑑𝑧𝑎 (𝑧) = 𝑎
( )

.
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The important consequence of the transition 
to the continuum is the fact that the first two 
equations from (15) vanish from the 
calculation at 𝑛 → 𝑧, i.e. they are merged into 
the last of equations from (15), which is the 
continual approximation has the form:   

+
( )

( ) 
 𝐴 = 0.                  (18) 

By the assumption:   
𝐸 > 4𝑄 + 2𝑊 ≡ 𝐸  

( )
                                                 (19) 

and by the substitution: 2𝑧/𝐿 − 1 = 𝜏𝜁, with 
𝜏 = 𝑊 (𝑎 𝐿)  [4Φ (𝐸 − 4𝑄 − 2𝑊 )] , the 

equation (17) becomes known Hermite-Weber 
equation:   

+ (𝜅 − 𝜁 )𝐴 = 0,                                                (20) 

where 𝜅 = (𝐸 − 4𝑄) Φ (𝐸 − 𝐸 
( )

)𝑊
/

. 

Here we introduce the requirement that the 
amplitudes 𝐴 are finite for arbitrary structure 
thickness (it means even for 𝐿 → ∞ too). To 
satisfy this requirement we must take the 
known condition of the finiteness for the 
solutions for the Hermite-Weber equation: 
𝜅 = 2𝜇 + 1;         𝜇 = 0,1,2, … Based on this we 
find: 

  

 𝐸 , = 4𝑄 + 2𝑏 (2𝜇 + 1) Φ𝑊 1 ± 1 −
( )

/

, (21) 

were 𝑏 = 𝑎 /𝐿. The expression for energies (20) indicates that index 𝜇 must be limited from 
below (the energies must be real):   
 2 𝜇 ≥  𝑏 2/Φ − 1. (22) 
 
It means that the minimal allowed value of 
the index 𝜇 is the minimal integer which is 
bigger than the final term in (20). As we can 
see, the lower boundary of quantum number 
𝜇 depends on the number of structural layers 
(through 𝑁 ), on the way of sputtering 
(through 𝑛 ), and on the type of ion-ion 
interaction (through ℎ). If the thickness of the 
structure increases, the lower value of 𝜇 
increases too.  
For simplification, instead of the expression 
(20), we will use the approximate expressions 
for energies, which we obtain by the 
expansion of the square root up to the 
quadratic terms:   
𝐸 = 𝐸

( )
+ 4𝑏 (2𝜇 + 1) Φ𝑊 −

( )
     (23) 

and   
𝐸 = 𝐸

( )
+

( )
.                                            (24) 

It is very easy to notice that both obtained 
expressions for energies satisfy the 
necessary condition (18). However, by the 

analysis of (22) and (23), we can conclude the 
following. 
- Since 𝐸 < 𝐸 , the states with energy 𝐸  

are more stable and more populated and 
so they essentialy define the normal 
behavior of the system.  

- From the expressions (21) and (23) it 
follows that the increase of film 
thickness (the increase of 𝑁 ) causes the 
increase of the lower boundary of the 
index 𝜇, and the correction of 𝐸 , which 
depends on sputtering, decreases. This is 
in complete agreement with the 
conclusions that we can accomplish 
without going over to continuum, i.e. 
directly analysing discrete eq.s (15).   

We can see in expressions defining 𝜁 – text 
under (18), that the boundaries of the interval 
for 𝜁 are proportional to 𝐿/𝑎 = 𝑏  and so we 
can approximately take: 𝜁 ∈ [−∞, +∞], where 
the approximation is better if the film is 
thicker. We can then express the solutions of 
equation (19) using Hermite polynomials:

 

𝐴 (𝜁) =
/

!√
/ 𝐻 (𝜁)  ;     𝐻 (𝜁) = (−1) 𝑒 (𝑒 )    𝜇 = 0,1,2, …       (25) 

 
In this way we have defined single-particle 
degenerate states of the system: for the wave 

functions – by the equations (12), (14), and 
(24) and for energies – by (20).  
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4. CHARGE CARRIERS DISPERSION LAW 
We shall perform the diagonalization of the 
electron Hamiltonian in the following stages. 

1. In the framework of the continual 
approximation, Hamiltonian 𝐻  "melted" 
in Hamiltonian 𝐻  using the formulas for 
transition to continuum

𝐶 → 𝐶 (𝜁);        𝑊 1 +
4Φ

𝐿
𝑧 −

𝐿

2
→ 𝑊 1 +

4Φ𝜏

𝐿
𝜁 . 

(Because of the transformation 𝑛 → 𝑧 → 𝜏𝜁, it 
is obvious that the sum over 𝑛  must be 
changed by integral over 𝜁:  ∑ ⟶

𝜏𝑎 ∑ ∫ 𝑑𝜁).  

2. From the operators 𝐶 (𝜁) we go over to 
new operators 𝐶  using the canonical 
transformations:   

𝐶 (𝜁) = ∑ 𝐴 (𝜇, 𝜁)𝐶 . (26) 
 
Therefore we can write Hamiltonian 𝐻  in the continual approximation in the form:   
 𝐻 ⟶ 𝐻 = ∑ ∫ 𝑑𝜁𝐶 (𝜁) Λ𝐶 (𝜁) − 

 −𝑊 𝐶 , (𝜁) + 𝐶 , (𝜁) − 𝑊 𝐶 (𝜁) + 𝐶 (𝜁) −         

 − 𝑊 1 + 𝜁 2𝐶 (𝜁) +
( )

. (27) 

 
We can now perform the diagonalization of Hamiltonian. After the substitutions (26) into (27) 
we have:   

𝐻 =
𝜏

𝑎
𝐶 𝐶 𝑑𝜁 𝐴 (𝜈; 𝜁)

∗

Λ𝐴 (𝜇; 𝜁) − 

−2𝑊 𝐴 , (𝜇; 𝜁) + 𝐴 , (𝜇; 𝜁) − 2𝑊 𝐴 (𝜇; 𝜁) + 𝐴 (𝜇; 𝜁) − 

 − 2𝑊 1 + 𝜁 2𝐴 (𝜇; 𝜁) +
( ; )

. (28) 

 
Based on (14) one can write: 𝐴 (𝜇; 𝜁) + 𝐴 (𝜇; 𝜁) = 2 𝐴 (𝜇; 𝜁)cos(𝑎 𝑘 ),  𝑗 = (𝑥, 𝑦). If we 

substitute 𝐸 with 𝐸  and 𝑧 with 𝜁 in the last of (15), we find 𝑊 (1 + 𝜁 ) 2𝐴 (𝜁) +

( )
= 𝐸

( )
− 𝐸 𝐴 (𝜁), which yields  

 𝑊 1 + 𝜁 2𝐴 (𝜇; 𝜁) +
( ; )

= 𝐸
( )

− 𝐸 𝐴 (𝜇; 𝜁). 

Using this and the orthonormalization 
condition from (12), we diagonalize the 
expression (28) for the Hamiltonian of the 
system:   
𝐻 = ∑ 𝐸 𝐶 𝐶 .                           (29) 
This expression represents the Hamiltonian 
of the electron subsystem which was the 
subject of this study. Together with the 
Hamiltonian of the phonon subsystem 
derived earlier [5–7], it enables the 
continuation of the investigation of the 
superconductivity mechanism in high-
temperature oxide ceramics. Analyses 
performed until now enable us to conclude 

that the theoretical model of symmetrically 
deformed structures satisfies the basic 
experimental indicators of superconductive 
perovskite behavior. It is primarily related to 
the proven presence of a gap in the spectrum 
of elementary excitations in this system 
(phonons or electrons) and its behavior in the 
structures with different stoichiometry. The 
question of the interaction between the 
subsystem of elementary charges and the 
subsystem of phonons (optical type) is still 
open; this question is crucial for the 
understanding of the nature of the new 
superconductive state.  
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5. ESTIMATE OF SYSTEM ORDERING 
In this section of the paper, we shall analyse 
the Landau superfluidity criterion and 
determine the probabilities of states and 
entropy of the system. Landau criterion for 
superfluid motion is min 𝑣 > 0, where 𝑣 =

𝐸(𝑝)/𝑝. The expression for energies (20) 
(using the approximations: 𝑎 ≅ 𝑎 ≡ 𝑎,  𝑎 ≅

3𝑎,  𝑊 ≅ 𝑊 ≡ 𝑊,  𝑊 = 𝑊/3 ,  sin𝛼 ≃ 𝛼,          
𝑘 = 𝑘 sin𝜃 cos𝜑,  𝑘 = 𝑘sin𝜃 sin𝜑,   𝑘 = 𝑘cos𝜃) 
yields the following expression:   
 
𝐸 ; (𝑝) =

ℏ
𝑝 sin 𝜃 + 𝑔±(𝜇) ,                          (30) 

 
where 𝑔±(𝜇) = 2 3 ℏ 𝑎 𝑓 (𝜇) 1 ±

1 − 2𝑓 (𝜇) ; 𝑓 (𝜇) = 𝑏 (2𝜇 + 1) Φ. For the 
phase velocity, we get:   
 
𝑣 ; (𝑝) = ; ( )

=
ℏ

𝑝 sin 𝜃 + 𝑔±(𝜇)         .(31) 

 
The condition 𝑑𝑣/𝑑𝑝 = 0 yields  𝑝 =

𝑔±(𝜇)sin 𝜃. Because of 𝜃 ∈ [0, 𝜋] ⇒ 𝑣 , ≥ 0, 

and because 𝑔 ≥ 𝑔 ⇒ 𝑣 ≥ 𝑣 . It follows that 
the state with the energy 𝐸  has a more 
expressive minimum than the state with the 
energy 𝐸 . For the second derivative, we get:   
 

; | = 2𝑊𝑎 ℏ  𝑔± (𝜇)sin 𝜃 ≥  0.        (32) 

 
We can see that the known – Landau 
criterion is satisfied for both energies, but it is 
"stronger" for the states with the energies 
𝐸   (  ≥ 𝐸 ) because 𝐸  has a bigger gap than 
𝐸 .  
We shall now determine the probability of 
the state of the system under consideration. 
If we introduce the notation   
 
𝜖 ; ≡ 𝐸 ; − 𝐸

( )
= 2𝑊 3 𝑎 ℏ 𝑔 (𝜇) − 1 ,(33) 

 
we can find – see text under the (18):   

𝜏 ; = 𝐿
/

Φ𝜖 ; 𝑊
/

                           .(34) 
Then the wave function (12) has the form:   

 
Ψ ; (𝑘 , 𝑘 , 𝑘 ) = ; ∑ ∫ 𝑑𝜁|𝐴 (𝜇; 𝜁)| ;  𝐶  |0〉                                                                                  (35) 

 
where |𝐴 (𝜇; 𝜁)| ; =

𝑁 ;  𝑒 ( )𝐴 (𝜁) and norm-factor is 
defined on the following way 𝑁 ; =

𝑎 𝑁 𝑁 𝜏 ; . The probability of finding the 
elementary charges with the energy 𝐸  (and 
𝐸 ), in agreement with (35), is:   

 

𝑃 ; (𝜇; 𝜁) = ; |𝐴 (𝜇; 𝜁)| ; = 𝑁 𝑁  𝐴 (𝜁),                                                                                               (36) 

 
wherefrom:   
 
𝑃 (𝜇; 𝜁) = 𝑃 (𝜇; 𝜁) ≡ 𝑃 (𝜁).                                     (37) 
 
Based on the last expression we can see that 
both states appear with equal probabilities!  
The entropy of the system under 
consideration is:   
 
𝑆 ; (𝜇) = − ; 𝐼(𝜇),                                                   (38) 

 
where the integral 𝐼(𝜇) ≡ ∫ 𝑑𝜁𝑃 (𝜁)ln𝑃 (𝜁) is 
need not be calculated, since, from (4.9) and 
(34), it follows:   

( )

( )
= ≡

/

≤ 1  ⟹   𝑆 (𝜇) ≤ 𝑆 (𝜇).(39) 

(Since 𝐸 ≥ 𝐸 , we get 𝜖 ; ≥ 0 and 𝜖 ≥ 𝜖 ). 
This expression yields that the states Ψ  
(with 𝐸 ) are less ordered than the states Ψ  

(with 𝐸 ). It means that the states with 𝐸  
(with higher energy and lower population) 
are probably responsible for superconductive 
effects in the observed system. The states 
with 𝐸  (with lower energy and higher 
population) are responsible for the normal 
behavior of this system. This is in agreement 
with the above comments about these two 
possible energies 
 
6. CONCLUSION REMARKS 
The particular features of high-temperature 
superconductors based on oxide ceramics are 
their granular structure and the anisotropy of 
properties. The existence of the weak isotopic 
effect and Cooper pairs of charge carriers is 
experimentally verified, similar to the 
conventional superconductors, but the BCS 
model could not explain high critical 
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temperature. For that reason and based on 
established experimental results [1–3,13–15], 
we have proposed the model of ceramic 
structure as tetragonal i.e. generalised cubic 
structure in which interatomic distances 
along one direction are a few times bigger 
than along the other two directions. It is, 
energetically, most convenient if the 
sputtered atoms locate themselves just along 
this direction.  
The analysis of the phonon spectrum in our 
model yields that we have phonon branches 
of optical type only in the spectrum (there 
exists an energy gap). It means that for 
phonon excitation the energy (heat) must be 
bigger than the energy gap.  
The analysis of the electron spectrum in 
these symmetrically deformed structures 
(concerning the planes 𝑛 = 0 and 𝑛 = 𝑁 ) 
yields that, as a consequence of the existence 
of the boundaries along z axes, we have two 
energy branches in the spectrum of charge 
carriers. The lower energy value is related to 
more populated states and contains the term 
depending on the sputtering. This term 
decreases with increasing of the film 
thickness. The higher energy value in the 
spectrum of charge carriers is not 
particularly analysed because these levels 
are low populated.  
In addition to this, in the framework of the 
model under consideration, we have 
determined the orthonormalized single-
particle state functions of this system, 
entropy, and the probabilities of possible 
states. The theoretical investigation in the 
framework of the presented model is not 
finished. It is necessary to form a 
Hamiltonian of the interaction between 
charge carriers and phonons and separate 
from it the essential part only, which 
describes the formation of Cooper pairs. Only 
after this, the thermodynamical analysis of 
the complete system follows. 
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